
Ao-Ai29 492 A MULTIPLICITY RESULT FOR A SEMILINERR DJRXCNLET 1/1
PROBLEN(U) NISCONSIN UNIV-MADISON MATHEMATICS RESEARCH
CENTER J1 V GONCALVES APR 83 NRC-TSR-2515

UNCLASSIFIED DAAG29-88-C-0841 F/G 12/1i N

ImommommomiI



1 1.8

IIIJI2 11111J1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



MRC Technical Summary Report #2515(;%Q S

10 A MULTIPLICITY RESULT FOR A

SEMILINEAR DIRICHLET PROBLEM

3. V. A. Goncalves

Mathematics Research, Center
University of Wisconsin- Madison '

610 Walnut Street
Madison, Wisconsin 53706

April 1983

(Received March 21, 1983)

Approved for public release

hTIC FILE COPYDistribution unlimited T O

Sponsored by jIL 01 83
U. S. Army Research Office

P. 0. Box 12211
Research Triangle ParkE
North Carolina 27709

83~~ c~~23



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

A MULTIPLICITY RESULT FOR A SEMILINEAR DIRICHLET PROBLEM

J. V. A. Goncalves*

Technical Summary Report #25 15
April 1983

ABSTRACT

Let n be a bounded smooth domain in R N We give an estimate for the

number of solutions of the problem0

Lu +g(u) A~u in nl, ul =0

where L is a second order elliptic operator. The behavior of the

nonlinearity g both at 0 and at mand the relationship between X and

the spectrum of L play an important role in the analysis.
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SXGNIFICANCE AND EXPLANATION

in this paper me considersthe nmber of solutions of the Dirichlet

problem for semilinear elliptic equations. Specifically we-study the question

of finding solutions u of an equation such as -fu + q(u) Au in a bounded

domain C R " subject to the condition that u vanishes on the boundary of

n. This problem has been intensively studied in the last few years it 

arises in many situations such as nonlinear diffusion generated by nonlinear

sources, the thermal ignition of gases, and others. -In this paper w derive7

precise estimates of the number of solutions under assumptions which are

natural for these problems thereby complementing results obtained by a number

of authors.

Acce--qon For

' -B---

The responsibility for the wording and'"views expressed in'this descriptive -

summary lies with MRC and not with the author of this report.
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1. Introduction

N
Let n2 be a bounded smooth domain in a We are concerned vith the

question of existence of multiple solutions for the problem0

()Lu +g(u) Au in A, uI 3  0

*where g: R R is a locally Lipschitz continuous function, Xis a real0

parameter and

N
Lu-- &(aij 32+ a u

if J.1 TXj to

has smooth real valued coefficient functions a a and a ) 0
ij i0

satisfying the ellipticity condition

N NN

a aij(x)EE1 ; c~ I C x e a, e

for some postiveconstant c. Let 0( A X < A .C ... be the
1 2j

sequence of eigenvalues of the linear problem

Luinku in nl, ujl 0

with each ) occurring in the sequence as often as its multiplicity. We

recall that the corresponding sequence of eigenfunctions ,c1, P2' ~*

is a complete orthonormal system of L 2(QR) with %0 > 0 in nl and ( 0

*Universidade de Brasilia. Partially supported by CNPq/Drasil.

Sponsored by the U.S. Army under Contract No. DAAG29-8O-C-0041.



on an where n(x) is the outward pointing normal to a. Our goal in this

paper is to prove the following result.

Theorem 1. Assume g: R R is a locally Lipschitz continuous function

satisfying

(g1 ) g(z) -o(Izl) at z- 0
(92) g + 4M as Izi + -

and

(g3 ) 0 4 Gz) - g(t)dt 4 j zg(z), z e R.

Then (1) has at least four solutions provided I > A
2

Theorem 1 is an improvement to an earlier result by Struwe (5] where a

condition stronger than (g 3 ), namely

(g') g(z)z is increasing in (0, +w) and is decreasing in (- # 0)
3 z

is assumed. As a matter of fact, by requiring more regularity on g, namely

g e c (i), Ambrosetti (61 proved as an application of the Morse Theory that

at least 3 nontrivial solutions of (1) do exist provided A > X2 and

(gl) - (g2 ) hold. Also for g e C1 (a) it was shown by Hofer [7] that (1)

has at least 4 montrivial solutions if (gl) - (g2 ) hold and A e (Au A+),

i > 2. We recall that more precise results are known both in the O.D.E. case

(see Berestycki f11] and references therein) and in the case that g is odd

(see Rabinowitz [4] where the technique used to prove Th. 2.8 applies to

()). We refer the reader to [1], (3], (9], (101 for additional results

concerning (1).
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Remarks.

(i Theorem 1 holds if is~ replaced by the weaker condition

(g') there exist numbers a < 0 < z such that6
2 -+

As- g(Z) -0 -Az +-g(z +.

* (Li) If we assume (g') in Th. I then it can be shown that (1) has exactly a

positive solution and a negative one. Moreover (1) has a maximal

solution and a minimal solution (see e.g. the Lecture Notes by

deligueiredo (101).

(iii) Dependence of g on x e 2 is allowed by modifying conveniently our

assumptions, for example, by requiring the limits (91) -(9 2 ) to be

uniform with respect to x e fi.

(iv) If zg(x) > 0 for a * 0, then it follows easily that (1) admits only

the trivial solution for A 4 A1

The author is grateful to Professor P. n. Rabinowitz for his help.
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S
2. Notations and Preliminary Results

We introduce in the Sobolev space H = H0 ( ) the inner product

0SN:

No~v), f (a1  au. !V + a uv) dX
ij a axj 0 o'd

=Blu~v) + f auvdx U, v e H. D

2
Let Jul, ( u, U). for u e H be the corresponding norm which is equivalent

to the usual norm of H. We denote by (,*)0 the inner product in L2 (SU

and by 1" O the corresponding norm and recall that (v, v)1 C A (v.v) for0 j 0
v e v where V - span (01 ,..,o and (ww) ( A w(w) for w ! wj1 jjI J+1 0j

where W -span (so+1.... Moreover H- V W and V, is orthogonal

to Wj both with respect to the L and H inner products. We denote by

p, and Qj the projectors onto V and Wj respectively.
p j

Next we will associate to (1) an auxiliary problem. Let "

Z+ supfz > 0 At - g(t) > 0, 0 < t < z}

and

z_ inf (z < 0 At - g(t) < 0, z < t < 01.

It follows from (g 1 ) - (g2 ) that - < z_ < 0 < z + . Instead of

working directly with (1) we are going to look for solutions of

(1') Lu f(u) in no ulam 0

where f: R * R is the bounded function (f is Lipschitz continuous if g is

locally Lipschitz continuous) defined by f(z) - Az - g(z) if z C x 4 z +

* and f(s) - 0 otherwise.

-4-



Lemma 1. Let g: t R be a continuous function satisfying (9 2 ). 1f

u e H is a solution of (1') then z < u z+ in fn and u is a solution

of (I).

Proof of Lea 1. Let u x)- u(x) if u(x) 4 z and u x) z if
Sz+ + z+

U(x) > z+. By a theorem of Stampacchia [12], u e H. On the other hand,

n+
f a (u-u ) ; 0. By using the uniform ellipticity of L and Poincar&'s

0 z
* +

Inequality we get clu - ul < 0 for some positive constant c. So
z + 0

u 4 z+ in fn. Similarly we can show that z 4 u in f0. Lemma 1 is

proved.

Let F(z) f ; f(t)dt for z e R and

1 2 f F(u),u• . '3(u) l ull u e H.

It follows that i e C (H,R), (VJ(u),v) - (u,v)I - f f(u)v u, v e H and

actually the solutions of (1') are the critical points of J. The following

auxiliary result will play an important role in this paper.

Theorem 2. Let g: R R be a continuous function satisfying (g1 ) - (g2)"

Suppose X > Then there exist solutions u. e c1+0 C), (a e 0,1)), of
1u+ au_

"1') with u < 0 < in , - (0 on 0 and -> 0 on 30. moreover
U+ - an < n nn

J(u+) 4  J(u) if u ) 0 and J(u_) < J(u) if u C 0.

Proof of Theorem 2. Let f () - Az - g(z) if 0 z z + and f(z) 0
otherwise. Let F+(z) - jf+(t)dt for z e 3 and

1

It is quite easy to check that J+ e c (H,R), J+ (u) + +- as lul - - and

3+ satisfies the Palais-Smale condition ((PS) for short). Thus there exists

u e R such that J (u+) inf J+(u). Actually, by using (gl) and X > X

uSHf

-5-



we find that J(t 1) < 0 for all t > 0 near 0. On the other hand, by

recalling that Lu+ f +(u +) in n in the weak sense and using the elliptic

estimates, Sobolev embedding theorem and maximum principles we get

u, C (a) for a e (0,1), u > 0 in n and - < 0 on 30. Moreover,
++ 3n

J(u+) J+(u+) J+(u) = J(u) if u ) 0. Similar arguments apply with

respect to u . This proves Theorem 2.

our approach to get the third nontrivial solution consists in applying

the idea of the Mountain Pass Theorem (cf. Ambrosetti-Rabinowitz (2]).

However the fact that ut are not necessarily minima of J poses a technical

difficulty. In order to get around it we had to use a reduction argument by

Lazer-Landesman-Meyers (131 related to the global Ljapunov-Schmidt method.

Actually we will use an improvement of that reduction argument by Castro (14].

Since (under the assumptions in Theorem 1) f(z) is Lipschitz continuous we

take k > 2 such that A < X and If(z)-f(z')I < A Iz-z'I for all
Ic k+1 Ic

z, z' e a. Now, if v e V V k  and w i w2 e w W k  we get

(VJ(v+wl) - VJ(v+2), w -w 2 ) "

2 - I (f(v+w 1 1 - flv+w2 )lw 1"w2)
1 w I  - w 2 1 1 1 f V W 2 ) ( -

1 2

k+1

By Castro's result mentioned earlier ([14], Lemma 2.1), there exists

0e e C (V,If) satisfying

(i) If v e V then J(v+e(v)) i inf J(v+w) and actually, 8(v) is the
wew

only element of W such that (Vj(v+O(v)), w), 0 for all w e w.

(ii) Let J(v) - J(v+e(v)) for v e V. Then J e C (V, R) and

(Vj(v), vI), = (VJ(v+O(v)), Vl) 1  for v, vl e v.

-6-



Moreover, u e H is a critical point of J iff u- v + Olv) and v

is critical point of J. So u- vi + 0(v,,) where , are critical points

of 3.

Leisa 2. Assume 9: R* R is a locally Lipschitz continuous function

I satisfying ( - (g 2 ). Suppose A > 1 Then there exists 6 > 0 such(91)~ -(2)

that a(V + n B, (v-) J *, 3(v ) C J(v) if v e B1 (v ) and J(v ) C J(v) S

if v e 8,1(v_).
I

Proof of Lema 2. From (i)-(ii) above we get for all v e V, v e w, u e H

(O(V)o.)- f f(v+(v))w.

By recalling that v and w are orthogonal both with respect to L2 and

H and writing P iPk and Q - k we find

(8(v), u), - f Qf(v+,(v))u

that is

TAM(v) - Qf(v+e(v)) in a

in the weak sense. It follows from the elliptic estimates that

1(v) - 0(v+) w2,p ' ClQf(v+0(v)) - Qf(v4 + O(v +))t p

for any p > 1. On the other hand, it is quite easy to check that

IQf(v + (v)) Qf(v + 8(v+))l 0 as Iv-v 1,+0

Thus ye get by using the Sobolev embedding W C ( ), (p > 1 large

enc ih), that

18(v) -O(v )I 1 * 0 as Iv-v I1 + 0

and further

I(v + 6(v)) - (v + 8(v))jI 1  0 as Iv-v + 1  0.

-7-



.au
Therefore by recalling that u+ > 0 in Q and < 0 on an we find

that v + 8 (v) > 0 in n provided Iv-v I 4 1 with 6 1 > 0 small

enough. In particular, J(v + J(v + (v+)) 4 J(v + (v)) - (v) for all

- v e B (v Similar arguments apply with respect to v. This proven

L*Lemma 2.

.I
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3. Proof of Theorem 1.

We can assume that both v and v + are isolated critical points of

3. Let, as in Ambrosetti-Rabinowitz [21,

0
3 - ( e C °([o,1],V); 0 (0) - v, a(1) - v I4

and ,

c- inf sup
8eB 0tic1

In order to show that c e R is a critical value of J we recall that

J(v) * 4 as v1 + 6. So J satisfies the (PS) condition. Suppose by

contradiction that c is not a critical value of J. It follows from the

Deformation Theorem (see e.g. Clark [15], Rabinowitz (]8) that there exist

0
> 0 and a e c([0o,1] x v,v) such that for all v e v

(i) 0(O,v) - v.

(ii) J(o(t,v)) is nonincreasing in t e (0,1J.

(iii) if J(v) 4 c + e then J(o(1,v)) 4 c-c.

On the other hand, from the definition of c there exists 8 e B such

that 3(0(t)) 4 c + c for t e [0,1]. Let 0(-) - o(1,B(.)). We claim that

- 0
s e 9. Indeed, o e c ((0,1],v) and j(0) - o(1,v_). Further there exists

u 6 (0,1] such that ka(t,v_) - o(O,v_)l 61 for t e [o,p]. On the other

hand, J(O(tV)) . 3'(0(0,v)) -(v for t e [o,1]. Thus

a(t,v.) - v for t e [oo]. If

sup {0 > 0; o(t,v_) v, 0 Ct i}

then we find easily by repeating the above argument that U* 1 . So

oY(1,v ) v_ and (1) - v.. Similarly we get (1) - v+ and consequently 9:

-9-



e B. But this is impossible, since by (iii) above J(j(t)) c - e for

te [0,1].

Now,

min J(v) > J(v+)
veaB6 (v + )

1

since we are assuming v+ to be an isolated minimum of . herefore

inf a(s([0,1])n a 6 (v+)) > a(v+)
BeB 1

and c > (v +). Similarly we get c > (v_). Next we will show that c < 0.

We claim that

there exists a e c 0([0,1, H ) such that a(O) u, a(1) = u+,

u_< O(t) < U and J(a(t)) < 0, 0 4 t 4 1.

Let O(t) P a(t) for t e [0,1], where a is given in (*). Then for all

t e (0,11

t (t)) - J(B(t) + e(B(t)))

= in J(O(t) + w)
wev

( J(B(t) + Q a (t))

-J(G (t)) < 0

so that c < 0. Next we will prove (*). If t e (0,1] then we get by

using (g 3 )

2
J(tu_) I uj 1 - F(tU )

2t- lu 1 2 X 2 2 +fGt
2 - I - t Ju_l o + ~t -

u 2 2 0 + f f2
-~~ ~ ~~ t2( 'u 0 at_)

4 t V~u-) < 0.



Similarly, J(tu ) < 0. Now, the following inequalities are consequences

of the maximum principles

(iv) there exist b_ < O'< b+ such that

+< b < 0(<b+ < u in

and

(v) if a < 0 < b then there exists r > 0 such that "

a 1  u1 b' in $11

-.4

for all v e 39(0) fn v where V - span {Olt- ,,p,) and 42. S 80 are 0

the eigenfunctions corresponding to A
2

On the other hand,

J(b ) < 0 and J(-bu)<0

provided b < 0 is near enough to 0. Let

a-(t) -th u + (1-t)b , 0 t 1.

We will show that J(*,(t)) < 0 provided b < 0 is taken sufficiently close

to o. zndeed, if t e (0,1] we get

J- I ( -,

(2)

21 2 X 2

Now, there exists C: + R such that

a (t) C -tbhu in A

and

G~a-(t) G(-tb-u ) + (1-t)g(E)b_ 01.

Moreover,

b (0I -u) 4 F <0 in fa

--1.
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so that F * 0 uniformly in n as b 0 0. we get from (2)

2 22 21

Jl () )  (th)2 J(u) + t(1-t)b2 f g(u) 1  + (1-t) - + ( )g)  f

2

n

A1-A
< (tb_12j(u_) + (1-t)2b 2 - - + J gl~lb_ l

Let

A+ 1-A
M - sup(t 2Ju + (1-t)2 -

0C t< 12

It follows that M < 0. On the other hand, p

and by using (g,) we get OR

Mfb_

provided b < 0 is sufficiently close to 0. Therefore J(C1'(t)) < 0 for

all t e (0,1] if b < 0 is near enough to 0. Let

a 0(t) tu, -b_ t 4 1

Then J(a0 (t)) < 0 for t e [-b_,l]. Similarly, we introduce

Ct(t) - tb+u+ + (1-t)b+i , 0 < t 1

and

a (t)" tb+ b+ C t < 1

00

* Let r > 0 be as in (Ui). If r > 0 is small enough we find that

3(v) < 0 for v e aB (0) n V and 3B (0) n span (p1 )  (b'lp , b'p wherer s r 1 1 +1

0 < b ' < b and b < b' < 0. Now, take any path say a 0  on B r (0) n V+ +- - +r a

connecting b'IP to b+%P. Let a-lt) and a (t) be the segments
-1 2 2

-12-
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connecting b o to b"_P and bp to b+o By joining all of these

* paths we get after reparametrization the path 0 as asserted in M). This

proven Theorem 1.

-13-
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